RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2013 Volume 20, Issue 5, Pages 13–30 (Mi da743)

This article is cited in 4 papers

On $m$-capacitated peripatetic salesman problem

E. Kh. Gimadiab, A. M. Istomina, I. A. Rykovab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia

Abstract: We consider a particular case of the problem of finding $m$ Hamiltonian cycles with capacity restrictions on edges usage ($m$-Capacitated Peripatetic Salesman Problem, $m$-$\mathrm{CPSP}$): the $2$-CPSP on minimum and maximum with edge weights from an integer segment $\{1,q\}$. The edges capacities are independent identically distributed random variables which assume $2$ with probability $p$ and $1$ with probability $1-p$. Polynomial algorithms for $2$-$\mathrm{CPSP_{min}}$ and $2$-$\mathrm{CPSP_{max}}$ with guarantee approximation ratio in average for all possible inputs are presented. In the case when edge weights are $1$ and $2$, the presented algorithms have approximation ratio $(19-5p)/12$ and $(25+7p)/36$ for the $2$-$\mathrm{CPSP_{min}}$ and the $2$-$\mathrm{CPSP_{max}}$ correspondingly. Ill. 17, bibliogr. 20.

Keywords: travelling salesman problem, $m$-peripatetic salesman problem, approximation algorithm, edge-disjoint Hamiltonian cycle, guarantee approximation ratio.

UDC: 519.8

Received: 27.12.2012
Revised: 10.06.2013


 English version:
Journal of Applied and Industrial Mathematics, 2014, 8:1, 40–52

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025