RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2014 Volume 21, Issue 1, Pages 15–29 (Mi da757)

This article is cited in 7 papers

The probabilistic analysis of an algorithm for solving the $m$-planar $3$-dimensional assignment problem on one-cycle permutations

E. Kh. Gimadiab, Yu. V. Glazkovb, O. Yu. Tsidulkob

a Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
b Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: We study the $m$-planar $3$-dimensional assignment problem on one-cycle permutations. In other words, it is the $m$-peripatetic salesman problem ($m$-PSP) with different weight functions for each salesman. The problem is NP-hard for $m\ge1$. We introduce a polynomial approximation algorithm suggested for $1<m<n/4$ with time complexity $O(mn^2)$. The performance ratios of the algorithm are established for input data (elements of $(m\times n\times n)$-matrix) which are assumed to be independent and identically distributed random variables on $[a_n,b_n]$, where $0<a_n<b_n$. If the distribution is uniform or dominates the uniform distribution, conditions on $a_n,b_n$ and $m$ are obtained for the asymptotic optimality of the algorithm. Ill. 1, bibliogr. 26.

Keywords: $m$-planar $3$-dimensional assignment problem, one-cycle permutations, $m$-PSP with different weight functions, polynomial approximation algorithm, asymptotic optimality.

UDC: 519.8

Received: 19.12.2012
Revised: 29.03.2013


 English version:
Journal of Applied and Industrial Mathematics, 2014, 8:2, 208–217

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025