RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2014 Volume 21, Issue 2, Pages 52–58 (Mi da766)

This article is cited in 2 papers

A threshold property of quadratic Boolean functions

N. A. Kolomeec

S. L. Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: Let $f$ be a Boolean function in $n$ variables and for any affine subspace $L$ of dimension $\lceil n/2\rceil$ either $f$ is affine on all shifts of $L$ or $f$ is not affine on any shift of $L$. It is proved that the algebraic degree of $f$ can be more than 2 only if there is no affine subspace of dimension $\lceil n/2\rceil$ that $f$ is affine on. Bibliogr. 8.

Keywords: Boolean function, quadratic Boolean function, bent function.

UDC: 519.7

Received: 09.07.2013
Revised: 24.12.2013


 English version:
Journal of Applied and Industrial Mathematics, 2015, 9:1, 83–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024