RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2014 Volume 21, Issue 4, Pages 54–61 (Mi da785)

This article is cited in 1 paper

Affine $3$-nonsystematic codes

S. A. Malyugin

S. L. Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: A perfect binary code $C$ of length $n=2^k-1$ is called affine $3$-systematic if in the space $\{0,1\}^n$ there exists a $3$-dimensional subspace $L$ such that the intersection of any of its cosets $L+u$ with the code $C$ is either empty or a singleton. Otherwise, the code $C$ is called affine $3$-nonsystematic. We construct affine $3$-nonsystematic codes of length $n=2^k-1$, $k\geq4$. Bibliogr. 11.

Keywords: perfect code, Hamming code, nonsystematic code, affine nonsystematic code, affine $3$-nonsystematic code, component.

UDC: 519.8

Received: 23.12.2013
Revised: 17.01.2014


 English version:
Journal of Applied and Industrial Mathematics, 2014, 8:4, 552–556

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025