RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2015 Volume 22, Issue 1, Pages 32–50 (Mi da805)

Affine $3$-nonsystematic perfect codes of length 15

S. A. Malyugin

Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: A perfect binary code $C$ of length $n=2^k-1$ is called affine $3$-systematic if there exists a $3$-dimensional subspace $L$ in the space $\{0,1\}^n$ such that the intersection of any of its cosets $L+u$ with $C$ is either empty, or a singleton. Otherwise, the code $C$ is called affine $3$-nonsystematic. In the paper, we construct four nonequivalent affine $3$-nonsystematic codes of length 15. Bibliogr. 12.

Keywords: perfect code, Hamming code, nonsystematic code, affine nonsystematic code, affine $3$-nonsystematic code, component.

UDC: 519.8

Received: 26.01.2014
Revised: 24.09.2014

DOI: 10.17377/daio.2015.22.438


 English version:
Journal of Applied and Industrial Mathematics, 2015, 9:2, 251–262

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024