RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2016 Volume 23, Issue 1, Pages 65–81 (Mi da839)

This article is cited in 2 papers

On symmetric properties of APN functions

V. A. Vitkupab

a Sobolev Institute of Mathematics, 4 Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia

Abstract: We study symmetric properties of APN functions and the structure of their images. It is proven that there is no permutation of variables which keeps an APN function values. Upper bounds for the number of symmetric coordinate Boolean functions in APN function are obtained. Also, there are proven upper bounds for the number of coordinate Boolean functions of an APN function which are invariant under circular translation of indices. Upper bounds for the maximal number of coincidental values are obtained for $n\le6$. A lower bound for the number of different values of an arbitrary APN function is proven. Bibliogr. 14.

Keywords: vectorial Boolean function, APN function, symmetric function.

UDC: 519.7

Received: 11.06.2015
Revised: 27.08.2015

DOI: 10.17377/daio.2016.23.498


 English version:
Journal of Applied and Industrial Mathematics, 2016, 10:1, 126–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025