RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2017 Volume 24, Issue 2, Pages 18–31 (Mi da867)

This article is cited in 1 paper

Enumeration of labeled outerplanar bicyclic and tricyclic graphs

V. A. Voblyi, A. K. Meleshko

Bauman Moscow State University, 5 Bld. 1 Vtoraya Baumanskaya St., 105005 Moscow, Russia

Abstract: The class of outerplanar graphs is used for testing the average complexity of algorithms on graphs. A random labeled outerplanar graph can be generated by a polynomial algorithm based on the results of an enumeration of such graphs. By a bicyclic (tricyclic) graph we mean a connected graph with cyclomatic number 2 (respectively, 3). We find explicit formulas for the number of labeled connected outerplanar bicyclic and tricyclic graphs with $n$ vertices and also obtain asymptotics for the number of these graphs for large $n$. Moreover, we obtain explicit formulas for the number of labeled outerplanar bicyclic and tricyclic $n$-vertex blocks and deduce the corresponding asymptotics for large $n$. Tab. 1, illustr. 4, bibliogr. 15.

Keywords: enumeration, labeled graph, outerplanar graph, bicyclic graph, tricyclic graph, asymptotics.

UDC: 519.175.3

Received: 10.05.2016
Revised: 11.10.2016

DOI: 10.17377/daio.2017.24.544


 English version:
Journal of Applied and Industrial Mathematics, 2017, 11:2, 296–303

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025