RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2017 Volume 24, Issue 2, Pages 53–67 (Mi da869)

This article is cited in 2 papers

Perfect binary codes of infinite length

S. A. Malyugin

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: A subset $C$ of infinite-dimensional binary cube is called a perfect binary code with distance 3 if all balls of radius 1 (in the Hamming metric) with centers in $C$ are pairwise disjoint and their union cover this binary cube. Similarly, we can define a perfect binary code in zero layer, consisting of all vectors of infinite-dimensional binary cube having finite supports. In this article we prove that the cardinality of all cosets of perfect binary codes in zero layer is the cardinality of the continuum. Moreover, the cardinality of all cosets of perfect binary codes in the whole binary cube is equal to the cardinality of the hypercontinuum. Bibliogr. 9.

Keywords: perfect binary code, Hamming code, Vasil'ev code, component, continuum, hypercontinuum.

UDC: 519.8

Received: 31.03.2016
Revised: 29.08.2016

DOI: 10.17377/daio.2017.24.535


 English version:
Journal of Applied and Industrial Mathematics, 2017, 11:2, 227–235

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025