Abstract:
A method is proposed for obtaining lower bounds for the length of the shortest cover and complexity of the minimal cover based on the notion of independent family of sets. For the problem of minimization of Boolean functions, we provide the functions and construct coverings by faces of the set of unit vertices for which the suggested lower bounds can be achieved in the case of five or more variables. The lower bounds, based on independent sets, are unreachable and cannot be used as sufficient conditions for minimality of such functions. Bibliogr. 11.