RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2018 Volume 25, Issue 3, Pages 23–35 (Mi da901)

This article is cited in 4 papers

Minimizing a symmetric quasiconvex function on a two-dimensional lattice

S. I. Veselov, D. V. Gribanov, N. Yu. Zolotykh, A. Yu. Chirkov

Institute of Information Technology, Mathematics, and Mechanics, Lobachevsky Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia

Abstract: We consider the minimization problem for a symmetric quasiconvex function defined by an oracle on the set of integer points of a square. We formulate an optimality criterion for the solution, obtain a logarithmic lower bound for the complexity of the problem, and propose an algorithm for which the number of inquiries to the oracle is at most thrice the lower bound. Bibliogr. 14.

Keywords: quasiconvex function, oracle, integer lattice.

UDC: 519.854

Received: 06.07.2017
Revised: 15.12.2017

DOI: 10.17377/daio.2018.25.585


 English version:
Journal of Applied and Industrial Mathematics, 2018, 12:3, 587–594

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024