RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2019 Volume 26, Issue 1, Pages 5–19 (Mi da914)

This article is cited in 4 papers

Stability aspects of multicriteria integer linear programming problems

S. E. Bukhtoyarov, V. A. Emelichev

Belarusian State University, 4 Nezavisimosti Ave., 220030 Minsk, Belarus

Abstract: Under consideration are the multicriteria integer linear programming problems with finitely many feasible solutions. The problem itself consists in finding a set of extremal solutions. We derive some lower and upper bounds for the $T_1$-stability radius under assumption that arbitrary Hölder norms are given in the solution and criteria spaces. A class of the problems with an infinitely large stability radius is specified. We also consider the case of the multicriteria linear Boolean problem. Bibliogr. 22.

Keywords: multicriteria ILP problem, set of extremal solutions, stability radius, $T_1$-stability, the Hölder norm.

UDC: 519.8

Received: 15.07.2018
Revised: 19.10.2018
Accepted: 28.11.2018

DOI: 10.33048/daio.2019.26.624


 English version:
Journal of Applied and Industrial Mathematics, 2019, 13:1, 22–29

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025