RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2019 Volume 26, Issue 2, Pages 30–59 (Mi da922)

This article is cited in 2 papers

A polynomial $3/5$-approximate algorithm for the asymmetric maximization version of $3$-PSP

A. N. Glebovab, S. G. Toktokhoevab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
b Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia

Abstract: We present a first polynomial algorithm with guaranteed approximation ratio for the asymmetric maximization version of the asymmetric $3$-Peripatetic Salesman Problem ($3$-APSP). This problem consists in finding the three edge-disjoint Hamiltonian circuits of maximal total weight in a complete weighted digraph. We prove that the algorithm has guaranteed approximation ratio $3/5$ and cubic running-time. Illustr. 18, bibliogr. 27.

Keywords: Hamiltonian cycle, traveling salesman problem, $m$-peripatetic salesman problem, approximation algorithm, guaranteed approximation ratio.

UDC: 519.8

Received: 06.06.2018
Revised: 27.11.2018
Accepted: 28.11.2018

DOI: 10.33048/daio.2019.26.622


 English version:
Journal of Applied and Industrial Mathematics, 2019, 13:2, 219–238

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025