RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2019 Volume 26, Issue 3, Pages 46–59 (Mi da930)

This article is cited in 1 paper

On $m$-junctive predicates on a finite set

S. N. Selezneva

Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia

Abstract: We consider predicates on finite sets. The predicates invariant under some $(m+1)$-ary near-unanimity function are called $m$-junctive. We propose to represent the predicates on a finite set in generalized conjunctive normal forms (GCNFs). The properties for GCNFs of $m$-junctive predicates are obtained. We prove that each $m$-junctive predicate can be represented by a strongly consistent GCNF in which every conjunct contains at most $m$ variables. This representation of an $m$-junctive predicate is called reduced. Some fast algorithm is proposed for finding a reduced representation for an $m$-junctive predicate. It is shown how the obtained properties of GCNFs of $m$-junctive predicates can be applied for constructing a fast algorithm for the generalized $S$-satisfiability problem in the case that $S$ contains only the predicates invariant under a common near unanimity function. Bibliogr. 15.

Keywords: predicate on a finite set, function on a finite set, near-unanimity function, bijunctive predicate, $m$-junctive predicate, conjunctive normal form, generalized satisfiability problem.

UDC: 519.7

Received: 05.02.2019
Revised: 21.03.2019
Accepted: 25.03.2019

DOI: 10.33048/daio.2019.26.647


 English version:
Journal of Applied and Industrial Mathematics, 2019, 13:3, 528–535

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025