RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2020 Volume 27, Issue 3, Pages 28–52 (Mi da955)

A polynomial algorithm with asymptotic ratio $2/3$ for the asymmetric maximization version of the $m$-PSP

A. N. Glebovab, S. G. Toktokhoevab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia

Abstract: In 2005, Kaplan et al. presented a polynomial-time algorithm with guaranteed approximation ratio $2/3$ for the maximization version of the asymmetric TSP. In 2014, Glebov, Skretneva, and Zambalaeva constructed a similar algorithm with approximation ratio $2/3$ and cubic runtime for the maximization version of the asymmetric $2$-PSP ($2$-APSP-max), where it is required to find two edge-disjoint Hamiltonian cycles of maximum total weight in a complete directed weighted graph. The goal of this paper is to construct a similar algorithm for the more general $m$-APSP-max in the asymmetric case and justify an approximation ratio for this algorithm that tends to $2/3$ as $n$ grows and the runtime complexity estimate $O(mn^3)$. Illustr. 2, bibliogr. 29.

Keywords: Hamiltonian cycle, Traveling Salesman Problem, $m$-Peripatetic Salesman Problem, approximation algorithm, guaranteed approximation ratio.

UDC: 519.8

Received: 02.12.2019
Revised: 09.05.2020
Accepted: 25.05.2020

DOI: 10.33048/daio.2020.27.677


 English version:
Journal of Applied and Industrial Mathematics, 2020, 14:3, 456–469


© Steklov Math. Inst. of RAS, 2025