RUS  ENG
Full version
JOURNALS // Doklady Akademii Nauk // Archive

Dokl. Akad. Nauk, 2018, Volume 482, Number 1, Pages 7–11 (Mi dan47513)

This article is cited in 1 paper

On pronormal subgroups in finite simple groups

A. S. Kondrat'eva, N. V. Maslovaa, D. O. Revinb

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: A subgroup $H$ of a group $G$ is called pronormal if, for any element $g$ of $G$, the subgroups $H$ and $Hg$ are conjugate in the subgroup they generate. Some problems in the theory of permutation groups and combinatorics have been solved in terms of pronormality, and the characterization of pronormal subgroups in finite groups is a problem of importance for applications of group theory. A task of special interest is the study of pronormal subgroups in finite simple groups and direct products of such groups. In 2012 E. P. Vdovin and D. O. Revin conjectured that the subgroups of odd index in all finite simple groups are pronormal. We disproved this conjecture in 2016. Accordingly, a natural task is to classify finite simple groups in which the subgroups of odd index are pronormal. This paper completes the description of finite simple groups whose Sylow 2-subgroups contain their centralizers in the group and the subgroups of odd index in which are pronormal.

DOI: 10.31857/S086956520003121-6


 English version:
Doklady Mathematics, 2018, 98:2, 405–408

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024