RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 492, Pages 58–61 (Mi danma1)

MATHEMATICS

Rings of integers in number fields and root lattices

V. L. Popovab, Yu. G. Zarhinc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Национальный исследовательский университет “Высшая школа экономики”, Москва, Россия
c Department of Mathematics, Pennsylvania State University, University Park, USA

Abstract: This paper investigates whether a root lattice can be similar to the lattice $\mathscr{O}$ of all integer elements of a number field $K$ endowed with the inner product $(x,y):=\operatorname{Trace}_{K/\mathbb{Q}}(x\cdot\theta(y))$, where $\theta$ is an involution of the field $K$. For each of the following three properties (1), (2), (3), a classification of all the pairs $K$, $\theta$ with this property is obtained: (1) $\mathscr{O}$ is a root lattice; (2) $\mathscr{O}$ is similar to an even root lattice; (3) $\mathscr{O}$ is similar to the lattice $\mathbb{Z}^{[K:\mathbb{Q}]}$. The necessary conditions for similarity of $\mathscr{O}$ to a root lattice of other types are also obtained. It is proved that $\mathscr{O}$ cannot be similar to a positive definite even unimodular lattice of rank $\le48$, in particular, to the Leech lattice.

Keywords: number field, ring of integers, root lattice.

UDC: 511.231

Received: 20.03.2020
Revised: 20.03.2020
Accepted: 24.03.2020

DOI: 10.31857/S2686954320030157


 English version:
Doklady Mathematics, 2020, 101:3, 221–223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024