RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 493, Pages 99–103 (Mi danma103)

This article is cited in 1 paper

CONTROL PROCESSES

Contact geometry in optimal control of thermodynamic processes for gases

A. G. Kushnerab, V. V. Lychaginc, M. Roopac

a Lomonosov Moscow State University, Moscow, Russian Federation
b Moscow Pedagogical University, Moscow, Russian Federation, Moscow, Russian Federation
c V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation

Abstract: We solve an optimal control problem for thermodynamic processes in an ideal gas. The thermodynamic state is given by a Legendrian manifold in a contact space. Pontryagin’s maximum principle is used to find an optimal trajectory (thermodynamic process) on this manifold that maximizes the work of the gas. In the case of ideal gases, it is shown that the corresponding Hamiltonian system is completely integrable and its quadrature-based solution is given.

Keywords: contact geometry, thermodynamics, optimal control, Hamiltonian systems, integrability.

UDC: 517.977

Presented: S. N. Vassilyev
Received: 27.03.2020
Revised: 14.04.2020
Accepted: 06.06.2020

DOI: 10.31857/S2686954320040104


 English version:
Doklady Mathematics, 2020, 102:1, 346–349

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024