RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 494, Pages 43–47 (Mi danma115)

This article is cited in 3 papers

MATHEMATICS

Kirchhoff index for circulant graphs and its asymptotics

A. D. Mednykhab, I. A. Mednykhab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation

Abstract: The aim of this paper is to find an analytical formula for the Kirchhoff index of circulant graphs $C_n(s_1,s_2,\dots,s_k)$ and $C_{2n}(s_1,s_2,\dots,s_k,n)$ with even and odd valency, respectively. The asymptotic behavior of the Kirchhoff index as $n\to\infty$ is investigated. We proof that the Kirchhoff index of a circulant graph can be expressed as a sum of a cubic polynomial in $n$ and a quantity that vanishes exponentially as $n\to\infty$.

Keywords: circulant graph, Laplacian matrix, eigenvalue, Wiener index, Kirchhoff index.

UDC: 517.545+517.962.2+519.173

Presented: Yu. G. Reshetnyak
Received: 06.12.2019
Revised: 29.08.2020
Accepted: 31.08.2020

DOI: 10.31857/S2686954320050379


 English version:
Doklady Mathematics, 2020, 102:2, 392–395

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024