RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 495, Pages 5–7 (Mi danma126)

This article is cited in 1 paper

MATHEMATICS

Orthogonal elements in nonseparable rearrangement invariant spaces

S. V. Astashkina, E. M. Semenovb

a Samara National Research University, Samara, Russian Federation
b Voronezh State University, Voronezh, Russian Federation

Abstract: Let $E$ be a nonseparable rearrangement invariant space, and let $E_0$ denote the closure of the set of all bounded functions in $E$. We study elements of $E$ orthogonal to the subspace $E_0$, i.e., elements $x\in E$ such that $\|x\|_E\le\|x+y\|_E$ for any $y\in E_0$.

Keywords: nonseparable Banach space, rearrangement invariant space, Orlicz space, Marcinkiewicz space, orthogonal elements.

UDC: 517.982.27

Presented: S. V. Kislyakov
Received: 21.07.2020
Revised: 21.07.2020
Accepted: 25.09.2020

DOI: 10.31857/S268695432006003X


 English version:
Doklady Mathematics, 2020, 102:3, 449–450

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025