RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 495, Pages 34–37 (Mi danma131)

This article is cited in 6 papers

MATHEMATICS

One problem of extremal functional interpolation and the Favard constants

Yu. S. Volkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

Abstract: For an extremal functional interpolation problem first considered by Yu.N. Subbotin, the explicit form of the extremal interpolation constants is calculated in terms of the Favard constants in the spaces $L_p$, $p=1,3/2,2$. Simple efficient recurrence formulas are obtained to calculate the Favard constants, and formulas for calculating these constants in terms of the Euler numbers are also given.

Keywords: interpolation, Favard constants, recurrence formulas, Euler numbers.

UDC: 517.5

Presented: V. I. Berdyshev
Received: 01.06.2020
Revised: 01.10.2020
Accepted: 05.10.2020

DOI: 10.31857/S2686954320060193


 English version:
Doklady Mathematics, 2020, 102:3, 474–477

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025