RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 496, Pages 5–9 (Mi danma144)

This article is cited in 7 papers

MATHEMATICS

Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases

V. V. Vedyushkina, A. T. Fomenko

Lomonosov Moscow State University

Abstract: A class of force evolutionary billiards is discovered that realizes important integrable Hamiltonian systems on all regular isoenergy 3-surfaces simultaneously, i.e., on the phase 4-space. It is proved that the well-known Euler and Lagrange integrable systems are billiard equivalent, although the degrees of their integrals are different (two and one).

Keywords: integrable system, billiard, billiard book, Liouville equivalence, Fomenko–Zieschang invariant, evolutionary force billiards, rigid body dynamics.

UDC: 517.938.5

Received: 23.01.2021
Revised: 23.01.2021
Accepted: 26.01.2021

DOI: 10.31857/S268695432101015X


 English version:
Doklady Mathematics, 2021, 103:1, 1–4

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024