RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 496, Pages 5–9 (Mi danma144)

This article is cited in 10 papers

MATHEMATICS

Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases

V. V. Vedyushkina, A. T. Fomenko

Lomonosov Moscow State University

Abstract: A class of force evolutionary billiards is discovered that realizes important integrable Hamiltonian systems on all regular isoenergy 3-surfaces simultaneously, i.e., on the phase 4-space. It is proved that the well-known Euler and Lagrange integrable systems are billiard equivalent, although the degrees of their integrals are different (two and one).

Keywords: integrable system, billiard, billiard book, Liouville equivalence, Fomenko–Zieschang invariant, evolutionary force billiards, rigid body dynamics.

UDC: 517.938.5

Received: 23.01.2021
Revised: 23.01.2021
Accepted: 26.01.2021

DOI: 10.31857/S268695432101015X


 English version:
Doklady Mathematics, 2021, 103:1, 1–4

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025