RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 496, Pages 64–67 (Mi danma156)

MATHEMATICS

Isometries on noncommutative symmetric spaces

F. A. Sukochevab, Jinghao Huanga

a School of Mathematics and Statistics, University of New South Wales, Kensington, Australia
b North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz, Russian Federation

Abstract: Let $\mathscr{M}$ be an atomless semifinite von Neumann algebra equipped with a faithful normal semifinite trace $\tau$ (or else, an atomic von Neumann algebra with all atoms having the same trace) acting on a separable Hilbert space $\mathscr{H}$. Let $E(\mathscr{M},\tau)$ be a separable symmetric space of $\tau$-measurable operators, whose norm is not proportional to the Hilbert norm $\|\cdot\|_2$ on $L_2(\mathscr{M},\tau)$. We provide a description of all bounded Hermitian operators on $E(\mathscr{M},\tau)$ and all surjective linear isometries of this space.

Keywords: surjective isometries, Hermitian operators, semifinite von Neumann algebra, symmetric spaces.

UDC: 517.98

Presented: B. S. Kashin
Received: 02.11.2020
Revised: 02.11.2020
Accepted: 24.11.2020

DOI: 10.31857/S2686954321010124


 English version:
Doklady Mathematics, 2021, 103:1, 54–56

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025