RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 496, Pages 73–78 (Mi danma158)

CONTROL PROCESSES

Sub-riemannian (2, 3, 5, 6)-structures

Yu. L. Sachkov, E. F. Sachkova

Ailamazyan Program Systems Institute of Russian Academy of Sciences, Pereslavl-Zalessky, Yaroslavskaja region, Russian Federation

Abstract: We describe all Carnot algebras with growth vector (2, 3, 5, 6), their normal forms, an invariant that separates them, and a change of basis that transforms such an algebra into a normal form. For each normal form, Casimir functions and symplectic foliations on the Lie coalgebra are computed. An invariant and normal forms of left-invariant (2, 3, 5, 6)-distributions are described. A classification, up to isometries, of all left-invariant sub-Riemannian structures on (2, 3, 5, 6)-Carnot groups is obtained.

Keywords: sub-Riemannian geometry, Carnot algebras, Carnot groups, left-invariant sub-Riemannian structures.

UDC: 517.977

Presented: R. V. Gamkrelidze
Received: 26.10.2020
Revised: 28.12.2020
Accepted: 28.12.2020

DOI: 10.31857/S2686954321010100


 English version:
Doklady Mathematics, 2021, 103:1, 61–65

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024