RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 498, Pages 5–9 (Mi danma168)

This article is cited in 2 papers

MATHEMATICS

Representation of synthesizable differentiation-invariant subspaces of the Schwartz space

N. F. Abuzyarova

Bashkir State University, Ufa, Bashkortostan, Russia

Abstract: We consider a differentiation-invariant subspace $W$ in the Schwartz space $C^\infty(a;b)$ which admits weak spectral synthesis. We obtain the conditions under which W can be represented as the direct (algebraic and topological) sum of its residual subspace and the closed subspace spanned by the set of exponential monomials contained in $W$.

Keywords: spectral synthesis, invariant subspaces, slowly decreasing function, Beurling–Malliavin density.

UDC: 517.538.2+517.518.3+517.984.26+517.547.2

Presented: V. A. Sadovnichy
Received: 16.12.2020
Revised: 27.04.2021
Accepted: 28.04.2021

DOI: 10.31857/S2686954321030024


 English version:
Doklady Mathematics, 2021, 103:3, 99–102

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025