RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 498, Pages 45–50 (Mi danma175)

MATHEMATICS

Three infinite families of Shilla graphs do not exist

A. A. Makhneva, I. N. Belousova, M. P. Golubyatnikova, M. S. Nirovab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
b Kabardino-Balkar State University, Nalchik, Russia

Abstract: A distance-regular graph of diameter 3 with the second eigenvalue $\theta_1=a_3$ is called a Shilla graph. For a Shilla graph $\Gamma$, the number $a=a^3$ divides $k$ and we set $b=b(\Gamma)=k/a$. Three infinite families of Shilla graphs with the following admissible intersection arrays were found earlier: $\{b(b^2-1),b^2(b-1),b^2;1,1,(b^2-1)(b-1)\}$ (I.N. Belousov), $\{b^2(b-1)/2,(b-1)(b^2-b+2)/2,b(b-1)4;1,b(b-1)/4,b(b-1)^2/2\}$ (Koolen, Park), and $\{(s+1)(s^3-1),s^4,s^3;1,s^2,s(s^3-1)\}$. In this paper, it is proved that, in the first family, there exists a unique graph, namely, a generalized hexagon of order 2, whereas there are no graphs in the second or third families.

Keywords: distance-regular graph, Shilla graph, triple intersection numbers.

UDC: 519.17

Received: 30.03.2021
Revised: 30.03.2021
Accepted: 27.04.2021

DOI: 10.31857/S2686954321030115


 English version:
Doklady Mathematics, 2021, 103:3, 133–138

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025