RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 500, Pages 26–30 (Mi danma199)

This article is cited in 2 papers

MATHEMATICS

On some modifications of Arnold's cat map

S. D. Glyzin, A. Yu. Kolesov

Centre of Integrable Systems, P.G. Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: An effective method is proposed for constructing specific examples of Anosov diffeomorphisms on the torus $\mathbb{T}^2$, that are different from linear hyperbolic automorphisms. We introduce a special class of diffeomorphisms that are compositions of the well-known linear Arnold’s cat map and some diffeomorphisms homotopic to the identity. Constructively verified sufficient hyperbolicity conditions are established for this class of mappings.

Keywords: Arnold’s cat map, hyperbolicity, torus, Anosov diffeomorphism.

UDC: 517.926

Presented: V. V. Kozlov
Received: 24.07.2021
Revised: 24.07.2021
Accepted: 08.08.2021

DOI: 10.31857/S2686954321050064


 English version:
Doklady Mathematics, 2021, 104:2, 242–246

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025