RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 500, Pages 35–39 (Mi danma201)

MATHEMATICS

Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain

A. A. Kon'kov

Lomonosov Moscow State University, Moscow, Russia

Abstract: Comparison theorems are obtained with the help of which the spherical maximum of solutions of quasilinear elliptic inequalities containing lower-order derivatives is estimated in terms of solutions of the Cauchy problem for an ordinary differential equation with a right-hand side depending on the geometry of the domain.

Keywords: nonlinear elliptic operators, unbounded domains, capacity.

UDC: 517.956.2

Presented: V. V. Kozlov
Received: 08.07.2021
Revised: 08.07.2021
Accepted: 08.08.2021

DOI: 10.31857/S2686954321050209


 English version:
Doklady Mathematics, 2021, 104:2, 250–253

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025