RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2021 Volume 501, Pages 16–21 (Mi danma215)

This article is cited in 4 papers

MATHEMATICS

On the spectrum of a non-self-adjoint quasiperiodic operator

D. I. Borisovabc, A. A. Fedotovd

a Institute of Mathematics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
b Bashkir State University, Ufa, Russia
c University of Hradec Králové, Czech Republic
d Saint Petersburg State University, St. Petersburg, Russia

Abstract: We study the operator $\mathscr{A}$ acting in $l^2(\mathbb{Z})$ by the formula $(\mathscr{A}u)_l=u_{l+1}+u_{l-1}+\lambda e^{-2\pi i(\theta+\omega l)}u_l$. Here, $l$ is an integer variable, while $\lambda>0$, $\theta\in[0,1)$, and $\omega\in(0,1)$ are parameters. For $\omega\notin\mathbb{Q}$, this is the simplest non-self-adjoint quasiperiodic operator. By means of a renormalization technique, we describe the geometry of the spectrum of this operator, compute the Lyapunov exponent on the spectrum, and describe the conditions under which either the spectrum is pure continuous or a point spectrum appears additionally.

Keywords: quasiperiodic operator, non-self-adjoint operator, Lyapunov exponent, spectrum.

UDC: 517.984.5

Presented: S. V. Kislyakov
Received: 30.09.2021
Revised: 18.11.2021
Accepted: 18.11.2021

DOI: 10.31857/S2686954321060059


 English version:
Doklady Mathematics, 2021, 104:3, 326–331

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025