RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2022 Volume 503, Pages 45–47 (Mi danma247)

MATHEMATICS

Behavior of binomial distribution near its median

N. A. Volkova, D. I. Dmitrievb, M. E. Zhukovskiia

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b ETH Zürich, ETH AI Center Zurich, Switzerland

Abstract: We study the behavior of the cumulative distribution function of a binomial random variable with parameters $n$ and $b/(n+c)$ at the point $b-1$ for positive integers $b\le n$ and real $c\in[0,1]$. Our results can be applied directly to the well-known problem about small deviations of sums of independents random variables from their expectations. Moreover, we answer the question about the monotonicity of the Ramanujan function for the binomial distribution posed by Jogdeo and Samuels in 1968.

Keywords: binomial distribution, median, Ramanujan function, small deviations of sums of independent random variables.

UDC: 519.212.2

Presented: V. V. Kozlov
Received: 06.01.2022
Revised: 06.01.2022
Accepted: 10.02.2022

DOI: 10.31857/S2686954322020199


 English version:
Doklady Mathematics, 2022, 105:2, 89–91

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024