RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2022 Volume 503, Pages 83–86 (Mi danma256)

MATHEMATICS

On periodic solutions of quasilinear parabolic equations with boundary conditions of Bitsadze–Samarskii type

O. V. Solonukhaab

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
b Mathematical Institute of RUDN University, Moscow, Russia

Abstract: We consider a quasilinear parabolic boundary value problem with a nonlocal boundary condition of Bitsadze–Samarskii type. A theorem on the existence and uniqueness of a periodic solution of this problem is proved.

Keywords: periodic solution, nonlocal boundary conditions of Bitsadze–Samarskii type, parabolic equation, maximal monotone operator, generalized solutions.

UDC: 517.9

Presented: E. I. Moiseev
Received: 17.11.2021
Revised: 17.11.2021
Accepted: 03.02.2022

DOI: 10.31857/S2686954322020175


 English version:
Doklady Mathematics, 2022, 105:2, 123–126

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024