RUS
ENG
Full version
JOURNALS
// Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
// Archive
Dokl. RAN. Math. Inf. Proc. Upr.,
2022
Volume 503,
Pages
83–86
(Mi danma256)
MATHEMATICS
On periodic solutions of quasilinear parabolic equations with boundary conditions of Bitsadze–Samarskii type
O. V. Solonukha
ab
a
Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
b
Mathematical Institute of RUDN University, Moscow, Russia
Abstract:
We consider a quasilinear parabolic boundary value problem with a nonlocal boundary condition of Bitsadze–Samarskii type. A theorem on the existence and uniqueness of a periodic solution of this problem is proved.
Keywords:
periodic solution, nonlocal boundary conditions of Bitsadze–Samarskii type, parabolic equation, maximal monotone operator, generalized solutions.
UDC:
517.9
Presented:
E. I. Moiseev
Received: 17.11.2021
Revised: 17.11.2021
Accepted: 03.02.2022
DOI:
10.31857/S2686954322020175
References
English version:
Doklady Mathematics, 2022,
105
:2,
123–126
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024