RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2022 Volume 506, Pages 45–48 (Mi danma296)

MATHEMATICS

Odd-distance sets and right-equidistant sequences in the maximum and Manhattan metrics

A. I. Golovanova, A. B. Kupavskiiab, A. A. Sagdeeva

a Moscow Institute of Physics and Technology, Moscow, Russia
b G-SCOP, Université Grenoble Alpes, CNRS, Ôðàíöèÿ

Abstract: We solve two related extremal-geometric questions in the $n$-dimensional space $\mathbb{R}^n_\infty$ equipped with the maximum metric. First, we prove that the maximum size of a right-equidistant sequence of points in $\mathbb{R}^n_\infty$ equals 2$^{n+1}$–1. A sequence is right-equidistant if each of the points is at the same distance from all the succeeding points. Second, we prove that the maximum number of points in $\mathbb{R}^n_\infty$ with pairwise odd distances equals 2$^n$. We also obtain partial results for both questions in the $n$-dimensional space $\mathbb{R}^n_1$ with the Manhattan distance.

Keywords: maximum metric, Manhattan metric, equilateral dimension, odd-distance sets, right-equidistant sequences.

UDC: 514.177.2

Presented: V. V. Kozlov
Received: 17.05.2022
Revised: 25.06.2022
Accepted: 27.07.2022

DOI: 10.31857/S2686954322050101


 English version:
Doklady Mathematics, 2022, 106:2, 340–342

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024