RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2022 Volume 506, Pages 57–61 (Mi danma299)

MATHEMATICS

On condensations onto $\sigma$-compact spaces

A. E. Lipinab, A. V. Osipovab

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
b Ural Federal University, Yekaterinburg, Russia

Abstract: In this paper, we prove the following result. Let $X$ be a complete metric space of weight $w(X)$ and $H\subseteq X$ be a set such that $w(X)<|H|<c$. Then there is no continuous bijection of the subspace$X\setminus H$ onto a $\sigma$-compact space. As a result, there is no continuous bijection of the subspace $X\setminus H$ onto a Polish space. Thus, it has been proved that metric compact spaces are not $a_\tau$-spaces for any uncountable cardinal number $\tau$. This result answers the question asked by E.G. Pytkeev in his coauthored work “On the properties of subclasses of weakly dyadic compact sets” to be published in the Siberian Mathematical Journal.

Keywords: condensation, Polish space, compact space, $\sigma$-compact space, $a_\tau$-space.

UDC: 515.122.5

Presented: S. V. Matveev
Received: 15.04.2022
Revised: 16.05.2022
Accepted: 10.08.2022

DOI: 10.31857/S2686954322050149


 English version:
Doklady Mathematics, 2022, 106:2, 351–355

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024