RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2022 Volume 506, Pages 95–107 (Mi danma305)

This article is cited in 2 papers

MATHEMATICS

Arithmetic properties of the values of generalized hypergeometric series with polyadic transcendental parameters

V. G. Chirskii

Lomonosov Moscow State University

Abstract: Theorems on the infinite linear independence of the values of generalized hypergeometric series $\sum_{n=0}^\infty(a_1)_n\cdots(a_{m-1})_nz^n$ with parameters including transcendental polyadic Liouville numbers are proved.

Keywords: infinite linear independence, polyadic Liouville numbers, Hermite–Padé approximations.

UDC: 511.36

Presented: A. L. Semenov
Received: 10.07.2022
Revised: 18.08.2022
Accepted: 20.08.2022

DOI: 10.31857/S2686954322050071


 English version:
Doklady Mathematics, 2022, 106:2, 386–397

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025