RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2022 Volume 507, Pages 15–21 (Mi danma311)

This article is cited in 2 papers

MATHEMATICS

Integral estimates of derivatives of rational functions in Hölder domains

A. D. Baranova, I. R. Kayumovb

a St. Petersburg State University, St. Petersburg, Russia
b Kazan Federal University, Kazan, Russia

Abstract: Given a bounded rational function of degree $n$ in a Hölder domain in the complex plane, it is shown that the area integral of the modulus of its derivative is bounded by a quantity of order $\sqrt{\log n}$. The obtained inequality improves a classical result of E.P. Dolzhenko (1966), as well as some of our recent results. Examples are constructed illustrating the influence of the length of the boundary on the behavior of area integrals of the moduli of the derivatives of bounded rational functions.

Keywords: rational functions, Hardy space, Hardy–Littlewood inequality, Hölder domain.

UDC: 517.535, 517.547

Presented: S. V. Kislyakov
Received: 19.07.2022
Revised: 07.09.2022
Accepted: 16.09.2022

DOI: 10.31857/S2686954322600471


 English version:
Doklady Mathematics, 2022, 106:3, 416–422

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025