RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2022 Volume 508, Pages 134–145 (Mi danma350)

This article is cited in 49 papers

ADVANCED STUDIES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

eco2AI: carbon emissions tracking of machine learning models as the first step towards sustainable AI

S. A. Budennyyab, V. D. Lazarevb, N. N. Zakharenkoa, A. N. Korovinb, O. A. Plosskayaa, D. V. Dimitrova, V. S. Akhripkina, I. V. Pavlova, I. V. Oseledetsbc, I. S. Barsolad, I. V. Egorovd, A. A. Kosterinad, L. E. Zhukove

a Sber AI Lab, Москва, Россия
b Artificial Intelligence Research Institute, Moscow
c Skolkovo Institute of Science and Technology, Moscow, Russia
d Sber ESG, Moscow, Russia
e HSE University, Moscow

Abstract: The size and complexity of deep neural networks used in AI applications continue to grow exponentially, significantly increasing energy consumption for training and inference by these models. We introduce an open-source package eco2AI to help data scientists and researchers to track the energy consumption and equivalent CO$_2$ emissions of their models in a straightforward way. In eco2AI we focus on accurate tracking of energy consumption and regional CO$_2$ emissions accounting. We encourage the research for community to search for new optimal Artificial Intelligence (AI) architectures with lower computational cost. The motivation also comes from the concept of AI-based greenhouse gases sequestrating cycle with both Sustainable AI and Green AI pathways. The code and documentation are hosted on Github under the Apache 2.0 license https://github.com/sb-ai-lab/Eco2AI.

Keywords: ESG, AI, sustainability, carbon footprint, ecology, CO$_2$ emissions, GHG.

UDC: 004.8

Presented: A. P. Kuleshov
Received: 28.10.2022
Revised: 28.10.2022
Accepted: 01.11.2022

DOI: 10.31857/S2686954322070232


 English version:
Doklady Mathematics, 2022, 106:suppl. 1, S118–S128

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024