RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2023 Volume 510, Pages 29–32 (Mi danma376)

This article is cited in 1 paper

MATHEMATICS

Transcendence of $p$-adic values of generalized hypergeometric series with transcendental polyadic parameters

V. G. Chirskii

Lomonosov Moscow State University, Moscow, Russia

Abstract: It is established that if $\alpha_1,\dots,\alpha_m$ are polyadic Liouville numbers, and the number $\xi$ is a positive integer or $\Xi$ is a polyadic Liouville number and if $\Psi_0(z)=\sum_{n=0}^\infty(\alpha_1)_n\cdots(\alpha_m)_nz^n$, $\Psi_1(z)=\sum_{n=0}^\infty(\alpha_1+1)_n\cdots(\alpha_m+1)_nz^n$, then there are infinitely many primes $p$ such that the at least one of the $p$-adic integers $\Psi_0(\xi)$, $\Psi_1(\xi)$, (respectively $\Psi_0(\Xi)$, $\Psi_1(\Xi)$) is transcendental.

Keywords: polyadic Liouville numbers, transcendental $p$-adic numbers.

UDC: 511.36

Presented: A. L. Semenov
Received: 18.01.2023
Revised: 19.03.2023
Accepted: 25.03.2023

DOI: 10.31857/S2686954323600039


 English version:
Doklady Mathematics, 2023, 107:2, 109–111

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025