RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2023 Volume 512, Pages 47–51 (Mi danma397)

MATHEMATICS

On higher integrability of the gradient of solutions to the Zaremba problem for $p$-Laplace equation

Yu. A. Alkhutova, C. D. Apiceb, M. A. Kisatovc, A. G. Chechkinacd

a Vladimir State University, Vladimir, Russian Federation
b University of Salerno, Italia
c Lomonosov Moscow State University, Moscow, Russian Federation
d Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation

Abstract: A higher integrability of the gradient of a solution to the Zaremba problem in a bounded Lipschitz plane domain is proved for the inhomogeneous $p$-Laplace equation.

Keywords: Zaremba problem, meyers estimates, $p$-capacity, imbedding theorems, higher integrability.

UDC: 517.954, 517.982

Presented: V. V. Kozlov
Received: 13.07.2022
Revised: 22.05.2023
Accepted: 30.05.2023

DOI: 10.31857/S268695432260046X


 English version:
Doklady Mathematics, 2023, 108:1, 282–285

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024