RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 491, Pages 29–37 (Mi danma4)

This article is cited in 5 papers

MATHEMATICS

On the Zakharov–Lvov stochastic model for wave turbulence

A. V. Dymova, S. B. Kuksinbcd

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Université Paris VII – Denis Diderot
c Shandong University, Jinan, PRC
d Saint Petersburg State University

Abstract: In this paper we discuss a number of rigorous results in the stochastic model for wave turbulence due to Zakharov–L'vov. Namely, we consider the damped/driven (modified) cubic nonlinear Schrödinger equation on a large torus and decompose its solutions to formal series in the amplitude. We show that when the amplitude goes to zero and the torus’ size goes to infinity the energy spectrum of the quadratic truncation of this series converges to a solution of the damped/driven wave kinetic equation. Next we discuss higher order truncations of the series.

Keywords: wave turbulence, energy spectrum, wave kinetic equation, kinetic limit, nonlinear Schrödinger equation, stochastic perturbation.

UDC: 517.938, 517.958, 51-73

Presented: D. V. Treschev
Received: 09.11.2019
Revised: 09.11.2019
Accepted: 21.01.2020

DOI: 10.31857/S2686954320020101


 English version:
Doklady Mathematics, 2020, 101:2, 102–109

Bibliographic databases:
ArXiv: 1907.05044


© Steklov Math. Inst. of RAS, 2025