RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2023 Volume 514, Number 2, Pages 417–430 (Mi danma484)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

ESGify: Automated classification of environmental, social and corporate governance risks

A. Kazakova, S. Denisovaa, I. Barsolaa, E. Kaluginaa, I. Molchanovaa, I. Egorova, A. Kosterinaa, E. Tereshchenkoa, L. Shutikhinaa, I. Doroshchenkoa, N. Sotiriadia, S. Budennyyab

a Sber AI Lab, Moscow, Russian Federation
b Artificial Intelligence Research Institute, Moscow, Russian Federation

Abstract: The growing recognition of environmental, social, and governance (ESG) factors in financial decisionmaking has spurred the need for effective and comprehensive ESG risk assessment tools. In this study, we introduce an open-source Natural Language Processing (NLP) model, “ESGify”12, based on MPNet-base architecture and aimed to classify texts within the frames of ESG risks. We also present a hierarchical and detailed methodology for ESG risk classification, leveraging the expertise of ESG professionals and global best practices. Anchored by a manually annotated multilabel dataset of 2,000 news articles and dosmain adaptation with texts of sustainability reports, ESGify is developed to automate ESG risk classification following the established methodology. We compare augmentation techniques based on back translation and Large Language Models (LLMs) to improve the model quality and achieve 0.5 F1-weighted model quality in the dataset with 47 classes. This result outperforms ChatGPT 3.5 with a simple prompt. The model weights and documentation is hosted on Github https://github.com/sb-ai-lab/ESGify under the Apache 2.0 license.

Presented: A. A. Shananin
Received: 24.08.2023
Revised: 15.09.2023
Accepted: 24.10.2023

DOI: 10.31857/S2686954323601525


 English version:
Doklady Mathematics, 2023, 108:suppl. 2, S529–S540

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024