RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 515, Pages 28–33 (Mi danma488)

MATHEMATICS

On a paradoxical property of the shift mapping on an infinite-dimensional tori

S. D. Glyzin, A. Yu. Kolesov

Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia

Abstract: An infinite-dimensional torus $\mathbb{T}^\infty=l_p /2\pi\mathbb{Z}^\infty$, where $l_p$, $p\ge1$, is a space of sequences and $\mathbb{Z}^\infty$ is a natural integer lattice in $l_p$ is considered. We study a classical question in the theory of dynamical systems concerning the behavior of trajectories of a shift mapping on $\mathbb{T}^\infty$. More precisely, sufficient conditions are proposed under which the $\omega$-limit and $\alpha$-limit sets of any trajectory of the shift mapping on $\mathbb{T}^\infty$ are empty.

Keywords: integer lattice, infinite-dimensional torus, shift mapping, turbulent behavior of trajectories.

UDC: 517.926

Presented: V. V. Kozlov
Received: 06.07.2023
Revised: 19.01.2024
Accepted: 20.01.2024

DOI: 10.31857/S2686954324010041


 English version:
Doklady Mathematics, 2024, 109:1, 20–24

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025