RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 515, Pages 34–39 (Mi danma489)

MATHEMATICS

On the structure of Laplacian characteristic polynomial of circulant graphs

Y. S. Kwona, A. D. Mednykhbc, I. A. Mednykhbc

a Yeungnam University, Gyeongsan, Republic of Korea
b Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
c Novosibirsk State University, Novosibirsk, Russian Federation

Abstract: The present work deals with the characteristic polynomial of Laplacian matrix for circulant graphs. We show that it can be decomposed into a finite product of algebraic function evaluated at the roots of a linear combination of Chebyshev polynomials. As an important consequence of this result, we get the periodicity of characteristic polynomials evaluated at the prescribed integer values. Moreover, we can show that the characteristic polynomials of circulant graphs are always perfect squares up to explicitly given linear factors.

Keywords: circulant graph, Laplacian matrix, eigenvalues, rooted spanning tree.

Presented: V. G. Romanov
Received: 21.04.2023
Revised: 19.01.2024
Accepted: 24.01.2024

DOI: 10.31857/S2686954324010059


 English version:
Doklady Mathematics, 2024, 109:1, 25–29

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024