RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 491, Pages 68–72 (Mi danma5)

This article is cited in 2 papers

MATHEMATICS

Minimal self-similar Peano curve of genus 5$\times$5

Yu. V. Malykhin, E. V. Shchepin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: The paper presents a plane regular fractal Peano curve with a Euclidean square-to-line ratio ($L_2$-locality) of 5$\frac{43}{73}$, which is minimal among all known curves of this class. The presented curve has a fractal genus of 25. Performed calculations allow us to state that all the other regular curves with a fractal genus not exceeding 36 have a strictly greater square-to-line ratio.

Keywords: space-filling curves, Peano curves, square-to-line ratio, regular fractal curves.

UDC: 519.6

Received: 22.01.2020
Revised: 22.01.2020
Accepted: 29.01.2020

DOI: 10.31857/S2686954320020150


 English version:
Doklady Mathematics, 2020, 101:2, 135–138

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025