RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 491, Pages 61–64 (Mi danma51)

This article is cited in 2 papers

MATHEMATICS

Coarea formula for functions on 2-step Carnot groups with sub-Lorentzian structure

M. B. Karmanova

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

Abstract: We consider $C^1$-functions defined on two-step Carnot groups with a sub-Lorentzian structure defined by one horizontal direction with a negative squared length along it, and prove a nonholonomic coarea formula. A result of interest in itself concerns the correctness of the problem statement, namely, the level sets have to be spacelike.

Keywords: two-step Carnot group, sub-Lorentzian structure, level set, sub-Lorentzian measure, coarea formula.

UDC: 517.2+517.4+514.7

Presented: Yu. G. Reshetnyak
Received: 02.12.2019
Revised: 02.12.2019
Accepted: 21.01.2020

DOI: 10.31857/S2686954320020137


 English version:
Doklady Mathematics, 2020, 101:2, 129–131

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025