RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 491, Pages 65–67 (Mi danma52)

MATHEMATICS

Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators

L. V. Kritskov

Lomonosov Moscow State University, Moscow, Russian Federation

Abstract: Result on the uniform, over the entire real line, equiconvergence of spectral expansions related to the self-adjoint extension of a general differential operation of any even order with coefficients from the one-dimensional Kato class, with the Fourier integral expansion is presented. The statement is based on the obtained uniform estimates for the spectral function of this operator.

Keywords: self-adjoint even-order differential operator, spectral expansion, equiconvergence.

UDC: 517.927.25

Presented: E. I. Moiseev
Received: 19.12.2019
Revised: 19.12.2019
Accepted: 26.02.2020

DOI: 10.31857/S2686954320020149


 English version:
Doklady Mathematics, 2020, 101:2, 132–134

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025