RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 491, Pages 78–81 (Mi danma54)

MATHEMATICS

Probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$

M. V. Platonovaab, S. V. Tsykina

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Saint-Petersburg, Russian Federation
b Saint Petersburg State University, Saint-Petersburg, Russian Federation

Abstract: Two approaches are suggested for constructing a probabilistic approximation of the evolution operator $e^{itH}$, where $H=\dfrac{(-1)^md^{2m}}{(2m)!dx^{2m}}$, in the strong operator topology. In the first approach, the approximating operators have the form of expectations of functionals of a certain Poisson point field, while, in the second approach, the approximating operators have the form of expectations of functionals of sums of independent identically distributed random variables with finite moments of order $2m+2$.

Keywords: Schrödinger equation, Poisson random measures, limit theorems.

UDC: 519.21

Presented: I. A. Ibragimov
Received: 17.12.2019
Revised: 17.12.2019
Accepted: 26.02.2020

DOI: 10.31857/S2686954320020198


 English version:
Doklady Mathematics, 2020, 101:2, 144–146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024