RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2024 Volume 519, Pages 14–17 (Mi danma558)

MATHEMATICS

Infinite algebraic independence of polyadic series with periodic coefficients

V. G. Chirskii

Lomonosov Moscow State University, Moscow, Russia

Abstract: Consider sequences of integers $a^{(k,j)}_n$, $k=1,\dots, T_j$, $j=1,\dots,m$ such that $a^{(k,j)}_n=a^{(k,j)}_{n+T_j}$, $j=1,\dots,m$, $k=1,\dots,T_j$, $n=0,1,\dots$, and consider the series $F_{j,k}(z)=\sum_{n=0}^\infty a^{(k,j)}_n n! z^n$, $k=1,\dots,T_j$, $j=1,\dots,m$. The conditions are established under which the set of series $F_{j,k}(z)$, $k=2,\dots,T_j$, $j=1,\dots,m$ and the Euler series $\Phi(z)=\sum_{n=0}^\infty n!z^n$ are algebraically independent over $\mathbb C(z)$ and for any algebraic integer $\gamma\neq0$, their values at the point $\gamma$ are infinitely algebraically independent.

Keywords: polyadic numbers, infinite algebraic independence.

UDC: 511.36

Presented: A. L. Semenov
Received: 12.09.2024
Revised: 02.10.2024
Accepted: 02.10.2024

DOI: 10.31857/S2686954324050032


 English version:
Doklady Mathematics, 2024, 110:2, 432–434

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025