RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 491, Pages 95–101 (Mi danma58)

This article is cited in 37 papers

MATHEMATICS

New cases of integrable odd-order systems with dissipation

M. V. Shamolin

Lomonosov Moscow State University, Moscow, Russian Federation

Abstract: This paper shows the integrability of certain classes of odd-order dynamical systems that are homogeneous with respect to some of the variables and in which a system on the tangent bundle of smooth manifolds is distinguished. In this case, the force fields have dissipation of different signs and generalize previously considered cases.

Keywords: dynamical system, integrability, dissipation, transcendental first integral.

UDC: 517+531.01

Presented: V. V. Kozlov
Received: 20.01.2020
Revised: 20.01.2020
Accepted: 23.01.2020

DOI: 10.31857/S268695432002023X


 English version:
Doklady Mathematics, 2020, 101:2, 158–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025