Abstract:
Deep learning's emerging role in the financial sector’s decision-making introduces risks of adversarial attacks. A specific threat is a poisoning attack that modifies the training sample to develop a backdoor that persists during model usage. However, data cleaning procedures and routine model checks are easy-to-imple-ment actions that prevent the usage of poisoning attacks. The problem is even more challenging for event sequence models, for which it is hard to design an attack due to the discrete nature of the data. We start with a general investigation of the possibility of poisoning for event sequence models. Then, we propose a concealed poisoning attack that can bypass natural banks' defences. The empirical investigation shows that the developed poisoned model trained on contaminated data passes the check procedure, being similar to a clean model, and simultaneously contains a simple to-implement backdoor.
Keywords:poisoning attacks, concealed attacks, adversarial attacks, deep learning, event sequences.