RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2020 Volume 492, Pages 5–10 (Mi danma62)

This article is cited in 1 paper

MATHEMATICS

On some properties of superreflexive Besov spaces

A. N. Agadzhanov

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation

Abstract: This paper contains results concerning superreflective Besov spaces $B^s_{p,q}(\mathbb{R}^n)$. Namely, expressions for convexity moduli and smoothness moduli with respect to the “canonical” norms are derived, and properties related to the finite representability of Banach spaces and linear compact operators in $B^s_{p,q}(\mathbb{R}^n)$ are examined. Additionally, inequalities of the Prus–Smarzewski type for arbitrary equivalent norms and inequalities of the James–Gurariy type are presented. Based on the latter, two-sided estimates for the norms of elements in $B^s_{p,q}(\mathbb{R}^n)$ can be obtained in terms of the expansion coefficients of these elements in unconditional normalized Schauder bases.

Keywords: superreflexivity, finite representability, Besov spaces, convexity moduli, smoothness moduli.

UDC: 517.946.9

Presented: S. N. Vassilyev
Received: 24.02.2020
Revised: 26.02.2020
Accepted: 19.03.2020

DOI: 10.31857/S2686954320030030


 English version:
Doklady Mathematics, 2020, 101:3, 177–181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025