RUS  ENG
Full version
JOURNALS // Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia // Archive

Dokl. RAN. Math. Inf. Proc. Upr., 2025 Volume 523, Pages 3–9 (Mi danma639)

MATHEMATICS

On primary submodules in modules of entire functions that are dual to spaces of $\Omega$-ultradifferentiable functions

N. F. Abuzyarovaa, Z. Yu. Fazullinb

a Institute of Mathematics and Computing Centre of Ural Branch of Russian Academy of Sciences, Ufa, Russia
b Ufa University of Science and Technology, Ufa, Russia

Abstract: We consider weighted modules of entire functions that are dual to general spaces of $\Omega$-ultradifferentiable functions. We explore the local description problem for primary submodules in these modules. It is shown that there exist non-localisable primary submodules. We also obtain non-trivial conditions under which local description is possible. All assertions may be reformulated to the equivalent dual ones concerning with the spectral synthesis problem for differentiation invariant subspaces of $\Omega$-ultradifferentiable functions.

Keywords: entire function, zero set, submodule, local description, ultradistribution, Fourier–Laplace transform.

UDC: 517.538.2+517.518.3+517.984.26+517.547.2

Presented: V. A. Sadovnichy
Received: 25.03.2025
Revised: 04.05.2025
Accepted: 07.05.2025

DOI: 10.31857/S2686954325030012



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025